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ABSTRACT                        Influence of altitudinal gradient and polluted environment on externally accu-
mulated flavonoid aglycones were examined. Contents of apigenin in Veronica chamaedrys L. 
and quercetin 3,7,3’-trimethyl ether in Artemisia vulgaris L. were determinated. The highest api-
genin level was found in populations at alpine regions, whereas no relation was found between 
quercetin 3,7,3’-trimethyl ether and altitude. The largest amounts of quercetin 3,7,3’-trimethyl 
ether was found in samples collected from industrial polluted habitats. Ecological significance 
on external flavonoid aglycones is discussed. Acta Biol Szeged 49(3-4):29-32 (2005)
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Flavonoid variations are considered as a phytochemical 
adaptation to the abiotic and biotic environment by Dixon and 
Pavia (1995). Lipophilic flavonoid aglycones are accumulated 
on the plant surface (Wollenweber 1990). It has been as-
sumed that this surface disposition was determined by the 
chemo-ecological functions of aglycones. There are exten-
sively data that flavonoid synthesis is influenced by different 
abiotic and biotic factors: UV light radiation, drought, ozone, 
phytopathogens and insect-deterrent (Tomas-Barberan et al. 
1988; Midiwo et al. 1990; Cuadra et al. 1997; Cooper-Driver 
and Bhattacharya 1998; Lalova 1998; Markham et al. 1998; 
Simmonds 1998; Chaves et al. 2001; Saleem et al. 2001). 

Artemisia vulgaris L. (Asteraceae) and Veronica chamae-
drys L. (Scrophulariaceae) are perennial herbs, widely dis-
tributed in different habitats, from 0 to 1800 meter above sea 
level (m asl) for A. vulgaris populations and from 0 to 2300 
m asl for V. chamaedrys populations. Simple flavonol methyl 
ethers have been reported for West-European populations of 
A. vulgaris (Valant-Vetschera et al. 2003) and flavone deriva-
tives of V. chamaedrys populations (Nikolova et al. 2003).

Although the intraspecific flavonoid variation has been 
documented in numerous studies (cited by Bohn1987), only 
a limited number of reports treated the subject of flavonoid 
changes along altitudinal gradient (McDougal and Parks 
1984) and environmental pollution (Loponen et al. 1998). In 
the present study we examine external flavonoid aglycones 
variations of Veronica chamaedrys and Artemisia vulgaris 
across altitudinal gradient and polluted environment. 

The sampling of populations from habitats with different 
conditions allowed us to assess the intraspecific variations and 
main ecological trends of flavonoid accumulation.

Materials and Methods

Plant material

The plant samples were formed from aerial parts of blossoming 
plants collected from natural habitats on 24 populations of A. 
vulgaris during 1999, and on 12 populations of V. chamaedrys 
during 2001 in Bulgaria. The sampling sites were chosen 
to cover regions with different type and degree of environ-
mental pollution as well as at different altitude. Altitudi-
nal gradient includes populations of V. chamaedrys and A. 
vulgaris situated at various altitudes from 700 to 2290 m asl 
at Vitosha mountain (Bulgaria). Pollution gradient includes 
populations of A. vulgaris from habitats with industrial, 
traffic and background pollution. We examined influence 
on environmental pollution only on A. vulgaris populations 
because V. chamaedrys populations have a rare occurrence in 
polluted regions. All habitats are situated on similar altitude 
in the same geographical region. Industrial contamination is 
mostly by lead (Pb) and iron (Fe) ions and not so much by 
cooper (Cu) and zinc (Zn). Main toxic emissions are aromatic 
aerosols, ozone (O

3
), sulphur oxide (SOx), hydrogen sulphide 

(H
2
S), carbon oxide (CO), dust (Topalov 2001). Voucher 

specimens were deposited at the Herbarium in the Institute 
of Botany, Sofia, Bulgaria.

Sample preparation

Plant exudates were prepared from air-dried, not grounded 
aerial parts (5 g) by rinsed with acetone 2x20 m1 for 5 min 
to dissolve the material accumulated on leaf and stem sur-
faces. After evaporation of acetone, the dried extracts were 
dissolved in methanol for further TLC analysis.
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Flavonoid quantification

Toluene-dioxan-acetic acid (95:25:4) mixtures were used for 
the development of plates. Migration distance was 90 mm. 60 
µl of V. chamaedrys exudates and 40 µl of A. vulgaris exudates 
with unknown concentrations were spotted and developed on 
Merck aluminum sheets Kiselgel 60 F

254
 (0.2 mm thin layer, 

10 x 20 cm) together with standards. Compounds were visual-
ized after spraying with “Naturstoffreagenz A” reagent. The 
fluorescence emissions of apigenin (Rf = 0.34) and quercetin 
3,7,3’-trimethyl ether (Rf = 0.60) were snapped under UV 
radiation=336 nm with a digital camera, and the images were 

analyzed by QuantiScan 2.1® Biosoft software (Nikolova et 
al. 2004). The apigenin and quercetin 3,7,3’-trimethyl ether 
contents of the exudates were calculated from the densito-
gram peak areas by comparing to three standards (0.75, 1.5, 
3 µg/spot of apigenin and 0.75, 1, 1.5 µg/spot of quercetin 
3,7,3’-trimethyl ether) placed on the same plate. 

Flavonoid aglycones used as reference compounds in the 
TLC analysis, namely quercetin 3,7,3’-trimethyl ether and 
apigenin have been isolated and identified respectively from 
A. vulgaris and V. chamaedrys in a previous study (Nikolova 
2002). 

Table 1. Voucher numbers (SOM) and apigenin content in the 
samples of V. chamaedrys along altitudinal gradient.

SOM Altitude [m asl] Apigenin [µg/]±SD*

Co476 750 0.57±0.06
Co669 800 0.80±0.08
Co615 1000 1.60±0.08
Co618 1200 0.42±0.07
Co619 1250 0.47±0.06
Co623 1340 1.00±0.08
Co672 1600 1.56±0.06
Co621 1810 2.08±0.07
Co617 1870 1.80±0.06
Co616 1950 2.12±0.06
Co675 2200 1.61±0.07
Co614 2290 2.05±0.05

*Results are average values of three measurements; m asl: meters above sea 
level.

Table 2. Voucher numbers (SOM) and quercetin 3,7,3’-trimethyl 
ether content in the samples of A. vulgaris along altitudinal 
gradient.

SOM Altitude [m asl] Quercetin 3,7,3’-trimethyl ether 
[µg/g]±SD*

Co515 750 0.28±0.06
Co526 800 0.35±0.03
Co517 900 0.34±0.09
Co577 1000 0.32±0.03
Co688 1200 0.29±0.04
Co560 1300 0.35±0.04
Co518 1400 0.32±0.04
Co556 1440 0.29±0.05
Co513 1550 0.30±0.03
Co512 1800 0.28±0.06

*Results are average values of three measurements; m asl: meters above sea 
level.

SOM Habitat information Quercetin 3,7,3’-trimethyl ether [µg/g] SD*

industrial polluted zone
155134    Metal works “Kremikovstsi”, 800 m asl 0.48±0.03
Co 573    Chemical works “Verila”, 700 m asl 0.46±0.03
Co 510    Railway station “Yana” between metals works and uranium mine, 600 m asl 0.63±0.08
Co663    v. “Ravno pole”, there is flying toxic fragments to air, 500 m asl 0.47±0.09
Co511    Uranium mine “Buhovo”, 900 m asl 0.52±0.05
traffic polluted zone
Co662    Sofia, boulevard, 550 m asl 0.40±0.03
Co566    Sofia, main street, 500 m asl 0.35±0.06
Co647    Sofia, highway 550 m asl 0.44±0.03
Co694    Sofia, metro station 500 m asl 0.40±0.08
Co571    Sofia, airport 550 m asl 0.36±0.03
background polluted zone
Co683 Ljulun mountain, 700 m asl 0.28±0.01
Co515 Vitosha mountain, 700 m asl 0.28±0.06
Co558 Vitosha mountain, 800 m asl 0.22±0.02
Co574 Vitosha mountain, 900 m asl 0.34±0.09
Co606 Lozen mountain, 800 m asl 0.32±0.02

*Results are average values of three measurements; m asl: meters above sea level.

Table 3. Voucher numbers (SOM) and quercetin 3,7,3’-trimethyl ether content of in the samples of A. vulgaris from habitats with 
different type of pollution.
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Results and Discussion 

Flavonoid aglycones variation along altitudinal 
gradient

A TLC survey of apigenin variations over altitudinal interval 
700-2300 m asl on 12 populations of V. chamaedrys was 
performed and the results are given in Table 1. The apigenin 
content ranged from 0.47 to 2.17 µg/g of the dried leaf weight. 
The largest amounts of apigenin was found in the samples 
at the alpine regions. This pattern could be explained with 
the xeric alpine habitats and presumable UV-screen func-
tion of the leaf surface flavonoids. There are many reports 
demonstrating that flavonoid synthesis is induced by UV 
radiation (Lois 1994; Cuadra et al. 1997; Lalova 1998; 
Markham et al. 1998; Hofmann et al. 2000). Our results are 
in agreement with previous studies, which report a higher ac-
cumulation of exudate flavonoids as a response to more xeric 
habitats (Wollenweber 1990;  Chaves at al. 1997; Willliams et 
al. 1997; Valant-Vetschera and Wollenweber 2001). 

The quantitative analysis on flavonoid content in the 10 
populations of A. vulgaris over altidutinal inerval 800-1800 m 
asl showed that the altitude does not have a significant effect 
on quercetin 3,7,3’-trimethyl ether synthesis (Table 2). We 
suppose that structural differences on apigenin and quercetin 
3,7,3’-trimethyl ether are the reason for their different 
metabolisms along altitudinal gradient. The O-methylation 
of the hydroxyl substations inactivates anthioxidant activities 
of the flavonoids (Cao et al. 1997; Burda and Oleszek 2001). 
In this way apigenin was more efficient antioxidant than 
quercetin 3,7,3’-trimethyl ether. The antioxidant activity 
on aglycones is important for their protective role because 
UV radiation induces production of free radicals (Foyer et 
al. 1994).

Flavonoid aglycones variation in dependence of 
type on environmental pollution 

The quantification of quercetin 3,7,3’-trimethyl showed con-
siderable differences among the populations of A. vulgaris 
from the habitats with different type of pollution (Table 
3). The populations from the industrial polluted habitats 
displayed high content on quercetin 3,7,3’-trimethyl ether. 
Increases of phenolic compounds and flavonoids as a result of 
pollution impact have been observed in tree species (Loponen 
et al. 1997, 1998; Giertych et al. 1999), but the reasons for 
this increase are unclear. Chaves et. al. (1997) concluded that 
accumulation of methylated flavonoids prevent water loss and 
increase the general stress tolerance of the plants.

The present study reported infraspecific flavonoid varia-
tions of A. vulgaris and V. chamaedrys in relation to alti-
tudinal gradient and polluted environment. The apigenin 
accumulation in V. chamaedrys was increased at the alpine 
regions, while the content of quercetin 3,7,3’-trimethyl ether 
in A. vulgaris appeared to be independent of altitude. The 

synthesis of quercetin 3,7,3’-trimethyl ether was influenced 
positively by environmental pollution. The data support the 
postulated ecological significance on external flavonoid 
aglycones.
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